| [ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
| 45.1 Funciones y variables para diag |
| [ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Genera una matriz cuadrada con las matrices de lm en la diagonal, siendo lm una lista de matrices o de escalares.
Ejemplo:
(%i1) load("diag")$
(%i2) a1:matrix([1,2,3],[0,4,5],[0,0,6])$
(%i3) a2:matrix([1,1],[1,0])$
(%i4) diag([a1,x,a2]);
[ 1 2 3 0 0 0 ]
[ ]
[ 0 4 5 0 0 0 ]
[ ]
[ 0 0 6 0 0 0 ]
(%o4) [ ]
[ 0 0 0 x 0 0 ]
[ ]
[ 0 0 0 0 1 1 ]
[ ]
[ 0 0 0 0 1 0 ]
Antes de hacer uso de esta función ejecútese load("diag").
Devuelve la célula de Jordan de orden n con valor propio lambda.
Ejemplo:
(%i1) load("diag")$
(%i2) JF(2,5);
[ 2 1 0 0 0 ]
[ ]
[ 0 2 1 0 0 ]
[ ]
(%o2) [ 0 0 2 1 0 ]
[ ]
[ 0 0 0 2 1 ]
[ ]
[ 0 0 0 0 2 ]
(%i3) JF(3,2);
[ 3 1 ]
(%o3) [ ]
[ 0 3 ]
Antes de hacer uso de esta función ejecútese load("diag").
Devuelve la forma de Jordan de la matriz mat, pero
en formato de lista de Maxima. Para obtener la matriz
correspondiente, llámese a la función dispJordan
utilizando como argumento la salida de jordan.
Ejemplo:
(%i1) load("diag")$
(%i3) a:matrix([2,0,0,0,0,0,0,0],
[1,2,0,0,0,0,0,0],
[-4,1,2,0,0,0,0,0],
[2,0,0,2,0,0,0,0],
[-7,2,0,0,2,0,0,0],
[9,0,-2,0,1,2,0,0],
[-34,7,1,-2,-1,1,2,0],
[145,-17,-16,3,9,-2,0,3])$
(%i34) jordan(a);
(%o4) [[2, 3, 3, 1], [3, 1]]
(%i5) dispJordan(%);
[ 2 1 0 0 0 0 0 0 ]
[ ]
[ 0 2 1 0 0 0 0 0 ]
[ ]
[ 0 0 2 0 0 0 0 0 ]
[ ]
[ 0 0 0 2 1 0 0 0 ]
(%o5) [ ]
[ 0 0 0 0 2 1 0 0 ]
[ ]
[ 0 0 0 0 0 2 0 0 ]
[ ]
[ 0 0 0 0 0 0 2 0 ]
[ ]
[ 0 0 0 0 0 0 0 3 ]
Antes de hacer uso de esta función ejecútese load("diag").
Véanse también dispJordan y minimalPoly.
Devuelve la matriz de Jordan asociada a la codificación
dada por la lista l, que habitualmente será la salida
de la función jordan.
Ejemplo:
(%i1) load("diag")$
(%i2) b1:matrix([0,0,1,1,1],
[0,0,0,1,1],
[0,0,0,0,1],
[0,0,0,0,0],
[0,0,0,0,0])$
(%i3) jordan(b1);
(%o3) [[0, 3, 2]]
(%i4) dispJordan(%);
[ 0 1 0 0 0 ]
[ ]
[ 0 0 1 0 0 ]
[ ]
(%o4) [ 0 0 0 0 0 ]
[ ]
[ 0 0 0 0 1 ]
[ ]
[ 0 0 0 0 0 ]
Antes de hacer uso de esta función ejecútese load("diag").
Véanse también jordan y minimalPoly.
Devuelve el polinomio mínimo asociado a la
codificación dada por la lista l, que habitualmente
será la salida de la función jordan.
Ejemplo:
(%i1) load("diag")$
(%i2) a:matrix([2,1,2,0],
[-2,2,1,2],
[-2,-1,-1,1],
[3,1,2,-1])$
(%i3) jordan(a);
(%o3) [[- 1, 1], [1, 3]]
(%i4) minimalPoly(%);
3
(%o4) (x - 1) (x + 1)
Antes de hacer uso de esta función ejecútese load("diag").
Véanse también jordan y dispJordan.
Devuelve la matriz M tal que (M^^-1).A.M=J,
donde J es la forma de Jordan de A. La lista l
es la forma codificada de la forma de Jordan tal como la
devuelve la función jordan.
Ejemplo:
(%i1) load("diag")$
(%i2) a:matrix([2,1,2,0],
[-2,2,1,2],
[-2,-1,-1,1],
[3,1,2,-1])$
(%i3) jordan(a);
(%o3) [[- 1, 1], [1, 3]]
(%i4) M: ModeMatrix(a,%);
[ 1 - 1 1 1 ]
[ ]
[ 1 ]
[ - - - 1 0 0 ]
[ 9 ]
[ ]
(%o4) [ 13 ]
[ - -- 1 - 1 0 ]
[ 9 ]
[ ]
[ 17 ]
[ -- - 1 1 1 ]
[ 9 ]
(%i5) is( (M^^-1).a.M = dispJordan(%o3) );
(%o5) true
Nótese que dispJordan(%o3) es la forma de Jordan de la matriz a.
Antes de hacer uso de esta función ejecútese load("diag").
Véanse también jordan y dispJordan.
Devuelve f(mat), siendo f una función analítica
y mat una matriz. Este cálculo se basa en la fórmula integral
de Cauchy, que establece que si f(x) es analítica y
mat=diag([JF(m1,n1),...,JF(mk,nk)]),
entonces
f(mat)=ModeMatrix*diag([f(JF(m1,n1)),...,f(JF(mk,nk))])
* ModeMatrix^^(-1)
Nótese que hay otros métodos alternativos para realizar este cálculo.
Se presentan algunos ejemplos.
Ejemplo 1:
(%i1) load("diag")$
(%i2) b2:matrix([0,1,0], [0,0,1], [-1,-3,-3])$
(%i3) mat_function(exp,t*b2);
2 - t
t %e - t - t
(%o3) matrix([-------- + t %e + %e ,
2
- t - t - t
2 %e %e - t - t %e
t (- ----- - ----- + %e ) + t (2 %e - -----)
t 2 t
t
- t - t - t
- t - t %e 2 %e %e
+ 2 %e , t (%e - -----) + t (----- - -----)
t 2 t
2 - t - t - t
- t t %e 2 %e %e - t
+ %e ], [- --------, - t (- ----- - ----- + %e ),
2 t 2
t
- t - t 2 - t
2 %e %e t %e - t
- t (----- - -----)], [-------- - t %e ,
2 t 2
- t - t - t
2 %e %e - t - t %e
t (- ----- - ----- + %e ) - t (2 %e - -----),
t 2 t
t
- t - t - t
2 %e %e - t %e
t (----- - -----) - t (%e - -----)])
2 t t
(%i4) ratsimp(%);
[ 2 - t ]
[ (t + 2 t + 2) %e ]
[ -------------------- ]
[ 2 ]
[ ]
[ 2 - t ]
(%o4) Col 1 = [ t %e ]
[ - -------- ]
[ 2 ]
[ ]
[ 2 - t ]
[ (t - 2 t) %e ]
[ ---------------- ]
[ 2 ]
[ 2 - t ]
[ (t + t) %e ]
[ ]
Col 2 = [ 2 - t ]
[ - (t - t - 1) %e ]
[ ]
[ 2 - t ]
[ (t - 3 t) %e ]
[ 2 - t ]
[ t %e ]
[ -------- ]
[ 2 ]
[ ]
[ 2 - t ]
Col 3 = [ (t - 2 t) %e ]
[ - ---------------- ]
[ 2 ]
[ ]
[ 2 - t ]
[ (t - 4 t + 2) %e ]
[ -------------------- ]
[ 2 ]
Ejemplo 2:
(%i5) b1:matrix([0,0,1,1,1],
[0,0,0,1,1],
[0,0,0,0,1],
[0,0,0,0,0],
[0,0,0,0,0])$
(%i6) mat_function(exp,t*b1);
[ 2 ]
[ t ]
[ 1 0 t t -- + t ]
[ 2 ]
[ ]
(%o6) [ 0 1 0 t t ]
[ ]
[ 0 0 1 0 t ]
[ ]
[ 0 0 0 1 0 ]
[ ]
[ 0 0 0 0 1 ]
(%i7) minimalPoly(jordan(b1));
3
(%o7) x
(%i8) ident(5)+t*b1+1/2*(t^2)*b1^^2;
[ 2 ]
[ t ]
[ 1 0 t t -- + t ]
[ 2 ]
[ ]
(%o8) [ 0 1 0 t t ]
[ ]
[ 0 0 1 0 t ]
[ ]
[ 0 0 0 1 0 ]
[ ]
[ 0 0 0 0 1 ]
(%i9) mat_function(exp,%i*t*b1);
[ 2 ]
[ t ]
[ 1 0 %i t %i t %i t - -- ]
[ 2 ]
[ ]
(%o9) [ 0 1 0 %i t %i t ]
[ ]
[ 0 0 1 0 %i t ]
[ ]
[ 0 0 0 1 0 ]
[ ]
[ 0 0 0 0 1 ]
(%i10) mat_function(cos,t*b1)+%i*mat_function(sin,t*b1);
[ 2 ]
[ t ]
[ 1 0 %i t %i t %i t - -- ]
[ 2 ]
[ ]
(%o10) [ 0 1 0 %i t %i t ]
[ ]
[ 0 0 1 0 %i t ]
[ ]
[ 0 0 0 1 0 ]
[ ]
[ 0 0 0 0 1 ]
Ejemplo 3:
(%i11) a1:matrix([2,1,0,0,0,0],
[-1,4,0,0,0,0],
[-1,1,2,1,0,0],
[-1,1,-1,4,0,0],
[-1,1,-1,1,3,0],
[-1,1,-1,1,1,2])$
(%i12) fpow(x):=block([k],declare(k,integer),x^k)$
(%i13) mat_function(fpow,a1);
[ k k - 1 ] [ k - 1 ]
[ 3 - k 3 ] [ k 3 ]
[ ] [ ]
[ k - 1 ] [ k k - 1 ]
[ - k 3 ] [ 3 + k 3 ]
[ ] [ ]
[ k - 1 ] [ k - 1 ]
[ - k 3 ] [ k 3 ]
(%o13) Col 1 = [ ] Col 2 = [ ]
[ k - 1 ] [ k - 1 ]
[ - k 3 ] [ k 3 ]
[ ] [ ]
[ k - 1 ] [ k - 1 ]
[ - k 3 ] [ k 3 ]
[ ] [ ]
[ k - 1 ] [ k - 1 ]
[ - k 3 ] [ k 3 ]
[ 0 ] [ 0 ]
[ ] [ ]
[ 0 ] [ 0 ]
[ ] [ ]
[ k k - 1 ] [ k - 1 ]
[ 3 - k 3 ] [ k 3 ]
[ ] [ ]
Col 3 = [ k - 1 ] Col 4 = [ k k - 1 ]
[ - k 3 ] [ 3 + k 3 ]
[ ] [ ]
[ k - 1 ] [ k - 1 ]
[ - k 3 ] [ k 3 ]
[ ] [ ]
[ k - 1 ] [ k - 1 ]
[ - k 3 ] [ k 3 ]
[ 0 ]
[ ] [ 0 ]
[ 0 ] [ ]
[ ] [ 0 ]
[ 0 ] [ ]
[ ] [ 0 ]
Col 5 = [ 0 ] Col 6 = [ ]
[ ] [ 0 ]
[ k ] [ ]
[ 3 ] [ 0 ]
[ ] [ ]
[ k k ] [ k ]
[ 3 - 2 ] [ 2 ]
Antes de hacer uso de esta función ejecútese load("diag").
| [ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by Viktor T. Toth on septiembre, 27 2018 using texi2html 1.76.